Kevin L. Mills, National Bureau of Standards, Washington, D. C.

Testing OSI
protocols: NBS
advances the
state of the art

In addition to other techniques,
the National Bureau of Standards
uses automatic programming to

he drive to develop stan-
dard communication protocols for Open Systems Inter-
connection (OS) has progressed far beyond the dream
phase. Already, working consensus protocols are avail-
able for the first four layers of the OS| reference model.
These protocols will soon be followed by standard
internet, Session, and File Transfer protocols. In large
part, the success of this standardization is due to
government-supported laboratory programs allowing
trial development and testing of the protocols. The
results of the prototype development and testing pro-
grams are fed back into the standards development
process, thus yielding more mature and realistic stan-
dards for protocols.

One of the most effective government programs
toward this end is being pursued by the Institute for
Computer Sciences and Technology (ICST) at the
National Bureau of Standards (NBS). ICST has devel-
oped a protocol testing methodology and a set of
automated tools that facilitate rapid and effective eval-
uation of emerging standard protocols. Development
efforts of Federal Information Processing Standards
(FIPS), American National Standards, and International
Standards have all been influenced by the results of
these testing programs.

Synopsis

Before the ICST testing methodology can be employed,
the proposed protoco! standard must be described in a
precise notation. The description, called the formal
specification, must then be verified as to the services
provided and mechanisms used. From the verified
specification, a reference implementation is con-
structed using automated tools in order to reduce the
amount of hand-coding. This reference implementation
serves as the foundation for a testing architecture that

test protocol implementations.

is supported by several automated test tools. This
architecture also consists of formally defined testing
procedures based on scenarios of protocol service
primitives.

Figure 1 illustrates ICST’s process for verifying proto-
col specifications. First, a formal specification of the
protocol is created in accordance with ICST rules. The
formal specification, which is both machine and human
readable, is the input to a specification compiler. This
compiler produces a finite state machine (FSM) model
of the specification’s protocol mechanisms. Then, an
FSM analyzer is invoked that examines various subsets
of the protocol mechanisms. The FSM analyzer can
determine if the protocol described by the formal
specification meets five criteria:
= Completeness: An FSM transition exists for every
possible input.

m Free of deadlocks: No possible message sequence
will cause the computers to wait eternally for each
other.

m Free of livelocks: No possible message sequence
exists that might cause the computers to transmit
messages forever without making progress on user
information. An example of livelock is one machine
repeatedly sending the same message while the other
always returns an acknowledgment.

m Terminates: For any possible sequence, the machines
will conclude in an expected state.

m Bounded: There is no message sequence that cannot
be processed. In other words, it is impossible for a
computer to build an infinite queue of tasks.

If the FSM analyzer identifies protocol design errors,
the formal specification is updated and checked again.
After the analyzer verifies the protocol design in terms
of the five properties, the formal specification becomes
the basis for constructing a reference implementation

\—

1. Five properties. The finite state machine (FSM), an
an established computer modeling tool, is used to test
that the specification contains crucial properties.

SPECIFICATION
COMPILER

FINITE STATE
MACHINE (FSM)

FSM
ANALYZER

INCOMPLETE
DEADLOCK
LIVELOCK
NONTERMINATION

COMPLETE UNBOUNDED

DEADLOCK FREE
LIVELOCK FREE
TERMINATES
BOUNDED

2. Error-free. When possible, automated tools are em-
ployed to decrease the chance of human error. Some-
times, however, hand-coded modules are required.

SPECIFICATION
COMPILER

AUTOMATED
CODE SEGMENTS

C
COMPILER

REFERENCE
IMPLEMENTATION

of the protocol.

A reference implementation must behave correctly
with respect to the services and mechanisms defined
by its formal specification. In general, it is difficult to
ensure that any software implementation of a protocol
reflects the original specifications. Fortunately, the
ICST process for constructing a reference implementa-
tion provides a reasonable assurance that the imple-
mentation faithfully reflects the specification. (Fig. 2)

A specification compiler accepts the formal speci-
fication as input and produes high-level language code
implementing the protocol. This machine- independent
code represents correct protocol behavior as a set of
finite state machine transitions and simultaneous ac-
tions. Placing the code into a specific operating system
environment requires the addition of hand-coded, ma-
chine-dependent modules. For the most part, these
hand-coded modules do not affect correct protocol
behavior, although there are exceptions. These include
a small number of machine-dependent primitive opera-
tions identified in the protocol specification (for exam-
ple, selecting sequence space parameters or finding a
network address).

For a reference implementation of the NBS Class 4
Transport Protocol, the automatically generated code
contains 4,500 lines of C language code; the hand-
coded modules contain 5,700 lines. Thus, approxi-
mately 40 percent of the reference implementation for
Class 4 Transport was automatically generated from
the specification. Since much of the reference imple-
mentation is derived without the chance for human

error, the behavior of the protocol has a high probabil-
ity of correctly reflecting the specification. Because it
generates the protocol correctly, the reference imple-
mentation serves as the foundation for the ICST testing
architecture.

Structure

Figure 3 shows the architecture of ICST’s facility for
testing OS! protocols. The architecture consists of a
test center host and a remote client host attached on
the same network. (The remote client is the govern-
ment or industry organization that wants its implemen-
tation tested.) The ICST provides a set of files, contain-
ing test steps (scenario files), that are executed at each
host. A scenario interpreter at each host reads the
scenario files and provides an interface to the 0osl
protocol layer being tested. The client implements its
interpreter from a functional specification provided by
the ICST.

An enhanced scenario interpreter at the test center
provides the functions specified for the client scenario.
This interpreter records summary results for each sce-
nario and logs both the results of each test step and all
the data received from the client.

The test center interpreter provides an interface to
the reference implementation for the tested protocol
layer. Since the reference implementation only pro-
duces a correct protocol, it cannot indicate the remote
implementation’s behavior in the face of protocol per-
turbations. In order to analyze this behavior, ICST
developed a program called an exception generator

that is controlled by the test center interpreter. The
generator induces errors in the protocol data units, that
is, the packets containing protocol control information
and, optionally, data.

This exception generator resides between the refer-
ence implementation and the layer below in order to
receive correct PDUs and to induce errors. Under
control of the test center scenario interpreter, the
exception generator simulates network duplication,
loss, misordering, and damaging of PDUs. The
interpeter can change any field of a PDU and can add,
delete, and modify fields within PDU headers, including
checksums. The exception generator can operate on
PDUs both transmitted and received by the reference
implementation.

All of the reference implentation’s incoming and
outgoing protocol traffic can be passed through the
exception generator. Consequently, the generator can
keep a complete record of all PDUs exchanged be-
tween the reference and remote implementations. This
log also reflects all errors induced by the exception
generator, including lost, misordered, duplicated, and
damaged PUDs.

An additional feature of the ICST test architecture is
the ability to loop back at multiple levels. For example,

when testing Class 4 Transport, loop-back can be
activated at the transport level, the exception genera-
tor level, and the network level. In fact, before it began
testing with remote clients, ICST used this feature to
check all of its components in isolation.

More aids

In addition to those already described, the ICST has
implemented three other protocol testing tools. One of
them, the automated scenario generator, produces
scenario files in a grammar derived semi-automatically
from the formal protocol specification. This grammar is
the set of rules for generating all combinations of valid
commands for the scenario interpreter. Since both the
grammar and the scenario files are produced automati-
cally, no meaningful test scenarios will be overlooked.

A PDU log analyzer provides a human readable
representation of PDU exchanges logged by the excep-
tion generator. A hexadecimal representation is always
provided, and when feasible, the PDU fields are de-
coded into their mnemonics.

A performance monitor interprets PDU sequences
and can categorize PDUs by type, length, and other
parameters. In addition, it allows performance analysis.
The monitor operates from the PDU stream logged by

3. Total control. Through the exception generator, the
test center scenario interpreter induces PDU errors in a
controlled manner. The test center’'s PDU log file can

TEST CENTER

CONSOLE

SUMMARY
FILE

LOG
FILE

SESSION

EXCEPTION
GENERATOR

PROTOCOL DATA
UNITLOG FILE

SCENARIO INTERPRETER
WITH AN INTERFACE TO
THE LAYER UNDER TEST

APPLICATION

PRESENTATION

TRANSPORT

record all PDUs for on-line or off-line analysis. The same
architecture will be used when higher level standards
solidify and are implemented.

REMOTE CLIENT

CONSOLE

SUMMARY
FILE

LOG
FILE

Table 1: Summary of ICST protocol test tools

To0L PURPOSE

SPECIFICATION COMPILER BUILDS A FINITE STATE MACHINE (FSM) REPRESENTING PROTOCOL MECHANISMS
GENERATES THE PROGRAM SEGMENTS THAT IMPLEMENT THE ACTIONS ASSOCIATED
WITH FSM TRANSITIONS

FSM ANALYZER VERIFIES PROTOCOL SPECIFICATION FSM WITH RESPECT TO COMPLETENESS, FREEDOM

FROM DEADLOCK AND LIVELOCK, TERMINATION, AND WHETHER [T 1S BOUNDED

REFERENCE IMPLEMENTATION

PROVIDES CORRECT IMPLEMENTATION OF PROTQCOL BEHAVIOR IN ACCORD WATH THE

PROTOCOL SPECIFICATION

SCENARIO INTERPRETER

INTERPRETS TEST SCENARIOS AND DRIVES THE REFERENCE IMPLEMENTATION AND

EXCEPTION GENERATOR AS REQUIRED

GENERATES/COMPARES DATA FOR A TEST

RECORDS TEST RESULTS

EXCEPTION GENERATOR INDUCES PROTOCOL PERTURBATIONS AS DIRECTED BY THE SCENARIO INTERPRETER
LOGS PDU EXCHANGES
PROVIDES PDU EXCHANGES IN REAL-TIME TO THE PERFORMANCE MONITOR
PERFORMANCE MONITOR CONSUMES PDU STREAM AND PRODUCES PROTOCOL PERFORMANCE MEASURES
SCENARIO GENERATOR CREATES SCENARIOS BY EXAMINING A COMPOSITE SERVICE GRAMMAR
POU LOG ANALYZER PRODUCES A HUMAN-READABLE REPRESENTATION.OF A BINARY. ENCODED PDU STREAM

the exception generator. Performance measurements
can be done off-line using the PDU log file or in real-
time with PDUs passed from the exception generator.
In addition, when a local network is used for testing, the
performance monitor can be configured as an indepen-
dent network node providing measures across network
hosts. (See Table 1)

Hand in hand

An ICST protocol test is completely defined by a pair of
complementary test scenarios. Each test scenario is a
set of commands representing protocol service
primitives with parameters and, optionally, exception
generator commands. Service primitives possible within
the test scenarios for Class 4 Transport are shown in
Table A, B.

During a test, one scenario is executed at the test
center and a complementary scenario is executed at
the remote client site. Active service primitives direct a
scenario interpreter to request a protocol service.
Simultaneously, passive service primitives direct a sce-
nario interpreter to expect an indication that an action
will occur. To test connection establishment, for exam-
ple, the test center scenario would have a CONNECT
REQUEST service primitive, and the remote client sce-
nario would contain a CONNECT {NDICATION service
primitive.

The ICST has identified 421 test scenarios for testing
of Class 4 Transport implementations. Sixty of them
were selected from a larger number of automatically
generated scenarios, and the rest were generated by
hand. The table shows the categories of test scenarios

A: Test scenario service primitives

CONNECT REQUEST CONNECT INDICATION
CONNECT RESPONSE CONNECT CONFIRM
DATA REQUEST DATA INDICATION

EXPEDITED REQUEST EXPEDITED INDICATION
CLOSE REQUEST

DISCONNECT REQUEST

CLOSE INDICATION
DISCONNECT INDICATION

B: Test scenarios defined by ICST

VALID SEQUENCES OF SERVICE PRIMITIVES 64
INVALID SEQUENCES OF SERVICE PRIMITIVES 42
PARAMETER VARIATIONS ON SERVICE PRIMITIVES 47
INVALID SEQUENCES OF PDUs 107
PARAMETER VARIATIONS ON PUDs 76
PROTOCOL MECHANISM SPECIFIC TESTS 25
AUTOMATICALLY GENERATED TESTS 60

defined and the number in each category. These
include 361 hand-generated scenarios and 60 scenar-
ios selected from a large number of automatically
generated scenarios.

Procedures

Prior to the start of testing, the test scenarios to be
executed at the remote client sites are distributed on
magnetic tape. Testing is then conducted according to
a plan agreed upon by personnel at the test center and
the remote client site. ICST’s general plan is to perform
test scenarios in a building block fashion, beginning
with the hand-generated scenarios and ending with the
automatically generated scenarios.

The first set of tests ensures that the remote imple-
mentation is able to establish and terminate connec-
tions properly. Next are tests for simplex data flow in
each direction. Similar tests are conducted for expe-
dited (high priority) data flow. After testing simplex
data flow in both directions, more complicated sets of
scenarios are used to test full-duplex flow of normal
and expedited data.

After solid operation is assured under a mix of
normal situations, tests are executed that use the
controlled introduction of protocol perturbations. Fi-
nally, automatically generated tests are invoked.

For the ICST reference implementation of Class 4
Transport, all scenarios have been executed in loop-
back mode to ensure that the reference implemenation
operates as required. During this test period, reference
implementation errors were discovered, corrected, and
retested.

Using the method
The methodology and tools described above have also
been used to construct and test the NBS Class 2

Transport Protocol reference implementation and an
X.25 network interface sublayer. For Class 4 Transport,
the connection management phases of the formal
protocol specification have been verified. ICST’s testing
procedure has been used to test a single computer with
loop-back at several levels and has been employed
between computers at the ICST and Bolt, Beranek, and
Newman in Cambridge, Massachusetts, over the
ARPANET and Telenet networks. The degree of com-
pleteness of the testing methodology can best be
indicated by the scope of errors uncovered while
testing Class 4 Transport. The types of errors discov-
ered during this testing include: protocol design, re-
source management, transport user interface, coding,
documentation, PDU encoding/decoding, and even
errors in the host operating system. The rigor and
scope of these tests has greatly increased the prac-
ticality and correctness of the proposed NBS Transport
Protocol FIPS.

Future plans

In 1984, ICST will continue a 1983 program of cooper-
ative testing with commercial and government
implementors of the NBS Class 2 and Class 4 Transport
Protocols. These tests will operate on a variety of local
networks, satellite links, and Arpanet and Telenet.
Through this program, ICST will be able to assist
commercial and government implementors in buiding
correct transport protocol implementations. In addition,
it will also be able to assess and improve protocol
performance on specific network types. Lastly, the
program will allow ICST to continue to advance the
state of the art in development and testing of OSI
protocols. The results of the research programs, it is
hoped, will assist governmental, national, and interna-
tional standards bodies in their work on both emerging
and evolving protocol standards.

Ad(ditional reading:

1. J. Stephen Nightingale. “*Protocol Testing Using a
Reference implementation.”” Proceedings of the IFIP
WG 6.1 Second International Workshop on Protocol
Specification, Testing, and Verification, May, 1982.

2. R. J. Linn and J. S. Nightingale. ‘‘Some Experience
with Testing Tools for Testing OSI Protocol.”” Proceed-
ings of the IFIP 6.1 Third International; Workshop, On
Protocol Specification, Testing, and Verification, May
1983.

3. R. J. Linn and W. H. McCoy. “‘Producing Tests for
Implementations of OS| Protocols.” Proceedings of the
IFIP 6.1 Third International Workshop on Protocol
Specification, Testing, and Verification, May 1983.

4. T. P. Blumer and R. L. Tenney. “‘A Formal Specifica-
tion Technigue and Implementation Method for Proto-
cols.”” Computer Networks, Volume 6, Number 3,
1982. =

Reprinted from DATA COMMUNICATIONS, March, 1984, copyright 1984 by McGraw-Hill, Inc. with all rights reserved.
Additional reprints may be ordered by calling Data Communications Reprint Department: (609) 426-5494.

